Syntheses and Glycosidase Inhibitory Activities of 2-(Aminomethyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol Derivatives

by Florence Popowycz, Sandrine Gerber-Lemaire*, Catherine Schütz, and Pierre Vogel

Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, EPFL-BCH, CH-1015 Lausanne

New 2-(aminomethyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol derivatives were synthesized from (5*S*)-5-[(trityloxy)methyl]pyrrolidin-2-one (**6**) (*Schemes 1* and 2) and their inhibitory activities toward 25 glycosidases assayed (*Table*). The influence of the configuration of the pyrrolidine ring on glycosidase inhibition was evaluated. (2R,3R,4S,5R)-2-[(benzylamino)methyl]-5-(hydroxymethyl)pyrrolidine-3,4-diol ((+)-**21**) was found to be a good and selective inhibitor of α -mannosidase from jack bean ($K_i = 1.2 \,\mu$ M) and from almond ($K_i =$ 1.0 μ M). Selectivity was lost for the non-benzylated derivative (2R,3R,4S,5R)-2-(aminomethyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol ((+)-**22**) which inhibited α -galactosidases, β -galactosidases, β -glucosidases, and α -*N*-acetylgalactosaminidase as well.

Introduction. – Enzymes that are involved in the synthesis and processing of oligosaccharides, such as glycosidases and glycosyltransferases, are important catalysts for the specific assembly of oligosaccharide structures on proteins [1] and sphingolipids [2]. The design and preparation of selective inhibitors of these enzymes [3] is of high interest, as these molecules can be used to modulate cellular functions. Moreover they may provide potential drugs in new therapeutic strategies [4]. In particular, swainsonine (1), a natural inhibitor of Golgi α -mannosidase II containing a 4-amino-4-deoxymannofuranoside unit [5], reduces certain tumors and hematological dysfunctions [6] (*Fig.*). Nevertheless, some side effects resulted in limitations for the development of this compound in medicinal treatments. The search for new α -mannosidase inhibitors that might be used as antimetastatic agents is an important field of investigation, and some synthetic analogues of swainsonine have also shown interesting properties [7]. Recently, we reported that (2*R*,3*R*,4*S*) and (2*S*,3*R*,4*S*)-2-(aminomethyl)pyrrolidine-3,4-diol derivatives, such as **3a** and **4**, are selective and competitive inhibitors of α -mannosidases [8].

Inspired by the work of *Saotome* and co-workers [9], we wondered whether the introduction of a hydroxymethyl substituent at the C(5) position of the pyrrolidine ring could enhance the enzymatic inhibitory activity of our aromatic derivatives. We report here the syntheses and inhibitory activities toward glycosidases of 2-(aminomethyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol derivatives **5**.

Results and Discussion. – Following the procedure reported by *Ikota* and coworkers [10], the semi-protected lactam **6** was converted to the diastereoisomeric alcohols (-)-**9** and (-)-**10** *via* the allylic alcohols **7**, which were obtained as a mixture of unseparable diastereoisomers (*Scheme 1*). Mesylation of the secondary alcohols **7**

Figure. Swainsonine (1) and synthetic analogues as α -mannosidase inhibitors. K_i for α -mannosidase from jack bean.

followed by treatment with 'BuOK induced cyclization to give the protected pyrrolidines 8 in 50% yield. Ozonolysis of the olefin moiety and reductive treatment of the resulting aldehydes afforded (-)-9 and (-)-10 in 29 and 43% yields, respectively. The major stereoisomer (-)-10 was first oxidized under *Swern* conditions [11] and submitted to reductive amination in the presence of benzylamine to generate the protected diamine (-)-11 in 77% yield. Acidic hydrolysis of all the protective groups afforded (-)-12 in quantitative yield. The corresponding free diamino derivative (-)-13 was obtained after cleavage of the benzyl group and treatment with HCl. It was possible to generate the related enantiomers by transformation of the tritylated alcohol. For this purpose, alcohol (-)-10 was silvlated under classical conditions ('BuMe₂SiOTf, 2,6-lutidine (=2,6-dimethylpyridine), 0°), and *Birch* reduction of the resulting bis-ether allowed rapid and efficient removal of the trityl protecting group. All other attempts (HCOOH, TsOH, ZnBr₂, Me₂SiCl/phenol, H₂/Pd(OH)₂) failed to give the semiprotected derivative (+)-14. Following the procedure described before, the benzylamino derivative (+)-12 and the corresponding diamino derivative (+)-13 were obtained via (+)-15 in 68 and 51% yield, respectively (starting from (+)-14).

To generate other stereoisomers of this family, alcohol (-)-9 was protected as a silyl ether $(\rightarrow (-)$ -16) and submitted to *Birch* reduction (*Scheme 2*). However, the soformed alcoholate intermediate readily cyclized at the carbamate moiety to provide the bicyclic derivative (-)-17 in excellent yield¹). In the case of the isomer derived from (-)-10, the bulky trityl and *tert*-butyldimethylsilyl groups are located on the same face of the pyrrolidine ring so that the carbamate group may be pushed down on the opposite face of the ring. As a result, the cyclization was not observed within the reaction time. For isomer (-)-9, it was necessary to turn to a methoxymethyl (MOM) protective group $(\rightarrow (-)$ -18) to avoid this side reaction and to isolate the free alcohol

¹⁾ Such derivatives are often observed in the multi-step synthesis of pyrrolidine derivatives [12].

Scheme 1. Synthesis of (2S,3S,4R,5R)- and (2R,3R,4S,5S)-2-(Aminomethyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol Derivatives

 $Tr = Ph_3C$, Boc = BuOC(O), $Bn = PhCH_2$, $TBS = BuMe_2Si$

(-)-19 in 76% yield. Oxidation under *Swern* conditions followed by reductive amination in the presence of benzylamine afforded, after appropriate deprotection of the intermediate (-)-20, the benzylamino derivative (+)-21 and the diamino derivative (+)-22.

Scheme 2. Synthesis of (2R,3R,4S,5R)-2-(Aminomethyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol Derivatives

 $Tr = Ph_3C$, Boc = BuOC(O), $TBS = BuMe_2Si$, $MOM = MeOCH_2$, $Bn = PhCH_2$

Compounds (-)-12, (-)-13, (+)-12, (+)-13, (+)-21, and (+)-22 were tested for their inhibitory activities toward 25 commercially available glycosidases²), and the results were compared with the activities of the previously reported inhibitors 3. The data are summarized in the *Table* for galactosidases, glucosidases, mannosidases, and one α -*N*-acetylgalactosaminidase. Our derivatives did not show any inhibitory activity at 1 mm concentration toward α -L-fucosidases from bovine epididymis and from human placenta, β -mannosidase from *Helix pomatia*, β -xylosidase from *Aspergillus niger*, and β -*N*-acetylglucosaminidases from jack bean and from bovine epididymis A and B.

²) For detailed experimental conditions, see [13].

	3a	3b	(-)-12	(+)-12	(-)-13	(+)-13	(+)-21	(+)-22
a-Galactosidase:								
coffee bean	n.i.	n.i.	n.i.	n.i.	n.i.	72%	92%	100%
Aspergillus niger	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	44%
E. coli	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	63%
β -Galactosidase:								
E. coli	24%	92%	n.i.	n.i.	n.i.	97%	n.i.	83%
bovine liver	26%	n.i.	45%	59%	n.i.	n.i.	30%	86%
Aspergillus niger	n.i.	24%	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.
Aspergillus orizae	n.i.	60%	n.i.	n.i.	n.i.	n.i.	n.i.	43%
jack bean	n.i.	76%	37%	n.i.	n.i.	n.i.	n.i.	40%
β -Glucosidase:								
almond	68%	97%	n.i.	51%	31%	36%	41%	99%
Caldocellum saccharolyticum	n.i.	93%	n.i.	41%	40%	n.i.	58%	97%
α -Mannosidase:								_
jack bean	92%	81%	n.i.	n.i.	n.i.	n.i.	100%	97%
	$IC_{50} = 60$	$IC_{50} = 170$					$IC_{50} = 6.2$	
	$K_{\rm i} = 7.4$	$K_{\rm i} = 53$					$K_{\rm i} = 1.2({\rm M})$	
almond	69%	51%	n.i.	21%	n.i.	n.i.	98%	97%
	$IC_{50} = 230$	$IC_{50} = 1000$					$IC_{50} = 4.5$	
	$K_{\rm i} = 71$						$K_{\rm i} = 1.0$	
α -N-Acetylgalactosaminidase:						ŀ		
chicken liver	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	99%	99%
							$IC_{50} = 2.3$	
							$K_{\rm i} = 24$	

Table. Inhibitory Activities of 3,4-Dihydroxy-5-(hydroxymethyl)-2-yl Derivatives. Percentage of inhibition at 1 mm concentration, IC_{50} and K_1 in μ M, optimal pH. All inhibitions are competitive, except when indicated. M = mixed-type inhibition, n.i. = no inhibition at 1 mm concentration.

As we already observed for the aminopyrrolidinediol **3b**, derivatives that bear a primary amino group at the lateral side chain are moderate to strong inhibitors of a wide range of enzymes. In particular, aminopyrrolidinediol (+)-22 is a strong inhibitor of α -galactosidase from coffee bean (100% inhibition at 1mm), β -glucosidases from almond and Caldocellum saccharolyticum (99% and 97% at 1mM), α -mannosidase from jack bean and almond (each 97% at 1mm), and α -N-acetylgalactosaminidase from chicken liver (99% at 1mm). This lack of selectivity is probably due to the small size of the pyrrolidine derivative that can enter the active site of various enzymes without any specificity due to its flexibility. Introduction of an aromatic substituent at the primary amino group resulted in significative enhancement of the enzymatic selectivity, in particular for the (2R, 3R, 4S, 5R) derivative (+)-21 that appeared to be the most promising inhibitor of this study. This compound demonstrated competitive inhibition (*Lineweaver*-Burk plots) of α -mannosidase from almond ($IC_{50} = 4.5 \mu M$, $K_i = 1 \mu M$) and α -N-acetylgalactosaminidase from chicken liver ($IC_{50} = 2.3 \,\mu\text{M}, K_i = 24 \,\mu\text{M}$) and mixed-type inhibition of α -mannosidase from jack bean ($IC_{50} = 6.2 \ \mu\text{M}, K_i = 1.2 \ \mu\text{M}$). In comparison with derivative **3a**, which has no substituent at C(5) of the pyrrolidine ring, we observed not only enhancement of the inhibitory activity toward α -mannosidases (increase of a factor 70 for the inhibition of α -mannosidase from almond), but also found good inhibition of α -N-acetylgalactosaminidase.

These inhibitions can result from the different conformations adopted by the pyrrolidine ring that can either mimic a galactopyranoside or a mannopyranoside (*Scheme 3*). In derivative **3a**, the absence of a hydroxymethyl group at C(5) resulted in a complete loss of the binding to galactosidases. As expected, we also observed that the absolute configuration of the stereogenic centers of the pyrrolidine ring has a crucial influence on the inhibitory activities as the other isomers (-)-12 and (+)-12 exhibited poor or no inhibition toward the glycosidases tested.

Conclusions. – We have synthesized polysubstituted five-membered iminoalditols from (5S)-5-[(trityloxy)methyl]pyrrolidin-2-one (6) with various configurations. Evaluation of their inhibitory activities toward glycosidases demonstrated that only the (2R,3R,4S,5R) derivative exhibits interesting properties with strong inhibiton of α -mannosidases and α -N-acetylgalactosaminidase due to the different conformations that can adopt the pyrrolidine ring. Moreover, the introduction of a hydroxymethyl substituent at C(5) of the pyrrolidine ring led to significative enhancement of the inhibitory activity toward α -mannosidases in comparison with the nonsubstituted derivative. Exchange of the benzyl group in (+)-**21** for other aromatic systems might lead to better α -mannosidase inhibitors.

This work was supported by the *Swiss National Science Foundation* (Grant N° 2100-063567.00/1) and the Office Fédéral de l'Enseignement et de la Recherche (COST D13/0001/99).

Experimental Part

General. All commercially available reagents (*Fluka, Aldrich*) were used without further purification. Solvents were dried by standard methods. Light petroleum ether refers to the fraction boiling at $40-60^{\circ}$. Liquid/ solid flash chromatography (FC): silica-gel 60 (*Merck* No. 9385; 240–400 mesh). TLC: *Merck* silica-gel 60F₂₅₄ plates; detection by UV light, *Pancaldi* reagent ((NH₄)₆MoO₄, Ce(SO₄)₂, H₂SO₄, H₂O) or KMnO₄. IR Spectra: *Perkin-Elmer 1420* spectrometer. Optical rotations: *Jasco DIP-370* polarimeter; $[a]_D$ in 10^{-1} deg cm² g⁻¹. ¹H-NMR Spectra: *Bruker ARX-400* spectrometer, at 400 MHz; $\delta(H)$ in ppm rel. to the solvent's residual signal (CHCl₃, $\delta(H)$ 7.27°; CH₃OD, $\delta(H)$ 3.31) as internal reference, *J* in Hz; all ¹H assignents were confirmed by 2D-COSY-45 and 2D-NOESY experiments. ¹³C-NMR Spectra: same instrument as for ¹H but at 100.6 MHz; $\delta(C)$ in ppm rel. to the solvent's signal (CDCl₃, $\delta(C)$ 77.0°; CD₃OD, $\delta(C)$ 49.2) as internal reference, *J* in Hz; all ¹³C assignments were confirmed by 2D-HMQC. MS: Nermag R 10-10C, chemical ionization (NH₃) mode; m/z (amu) (% rel. to base peak). Elemental analyses: Ilse Beetz, D-96301 Kronach.

tert-Butyl (3aS,4S,6R,6aR)-4-[(Benzylamino)methyl]-tetrahydro-2,2-dimethyl-6-[(trityloxy)methyl]-5H-[1,3]dioxolo[4,5-c]pyrrole-5-carboxylate ((-)-11). To a soln. of oxalyl chloride (81 µl, 0.94 mmol, 1.15 equiv.) in CH₂Cl₂ (4 ml), cooled to -78° , was added DMSO (140 μ l, 1.97 mmol, 2.4 equiv.). After 20 min, alcohol (-)-10 (446 mg, 0.82 mmol, 1 equiv.) in anh. CH₂Cl₂ (8 ml) was added dropwise. After 20 min, Et₃N (571 µl, 4.1 mmol, 5 equiv.) was added, and the mixture was warmed to -30° for 20 min. The mixture was poured into H₂O (15 ml) and extracted with CH₂Cl₂ (3 × 20 ml). The combined extract was washed with brine (20 ml), dried (MgSO₄), and evaporated to afford a pale yellow oil. Sodium triacetoxyborohydride (243 mg, 1.15 mmol, 1.4 equiv.) was added portionwise to a stirred soln, of the crude aldehyde (0.82 mmol, 1 equiv.) and benzylamine (0.82 mmol, 1 equiv.) in 1,2-dichloroethane (8 ml). After stirring at r.t. overnight, the soln. was poured into sat. aq. NaHCO₃ soln. (10 ml) and extracted with CH_2Cl_2 (3 × 10 ml). The combined org. extract was dried (MgSO₄) and evaporated. FC (silica gel, AcOEt/light petroleum ether 1:1) afforded (-)-11 (400 mg, 77% (2 steps)). Colorless oil. $[a]_{359}^{25} = -28, [a]_{577}^{25} = -31, [a]_{346}^{25} = -35, [a]_{455}^{25} = -57, [a]_{455}^{25} = -69 (c = 0.37, CH_2Cl_2). UV$ (MeCN) 271 (33000), 214 (31560). IR (film): 3445, 3060, 2980, 2935, 1690, 1490, 1450, 1395, 1215, 1160, 1130, 1065, 1000, 900, 870, 755, 700. ¹H-NMR (400 MHz, CDCl₃): 7.47-7.25 (m, 20 arom. H); 4.70-4.62 (m, H-C(3a), H-C(6a)); 4.17 (m, H-C(6)); 4.04-3.84 (m, H-C(4)); 3.65-3.52 (m, PhCH₂); 3.38-3.04 (m, 2 H-C(1''); 2.74 (dd, ${}^{3}J(1',4) = 4.7$, ${}^{2}J = 11.7$, 1 H-C(1'); 2.67 - 2.54 (m, 1 H-C(1')); 1.49 (s, $Me_{2}C$); 1.38 (s, tBu): 1.36 (s, Me₂C). ¹³C-NMR (101 MHz, CDCl₃): 154.3 (s, NCOO); 143.6 (s, arom. C); 140.4 (s, arom. C); 128.8, 128.3, 128.0, 127.8, 127.1, 126.8 (6d, arom. C); 111.6 (s, Me₂CO); 86.4 (s, Ph₃C); 83.2, 82.3 (2d, C(3a), C(6a)); 79.8 (s, Me₃CO); 64.6 (2d, C(4), C(6)); 63.2 (t, C(1")); 53.6 (t, PhCH₂); 51.1 (t, C(1")); 28.3 (q, Me₃C); 27.3 (q, Me); 25.5 (q, Me). CI-MS (NH₃): 635 (100, $[M + H]^+$), 391 (10), 335 (4), 243 (91), 198 (25), 128 (68), 91 (27, 12), 128 (10), PhCH₂⁺). Anal. calc. for C₄₀H₄₆N₂O₅ (634.85): C 75.68, H 8.09, N 4.41; found: C 75.74, H 8.07, N 4.38.

 $(2S_3S_4R_5SR)-2-[(Benzylamino)methyl]-5-(hydroxymethyl)pyrrolidine-3,4-diol ((-)-12). A soln. of (-)-11 (48 mg, 7.561 \cdot 10^{-5} mol) in CF_3COOH (4 ml) and H_2O (0.5 ml) was stirred at r.t. for 45 min. Evaporation and FC (silica gel, MeCN/NH_4OH soln. 4:1) afforded (-)-12 (19 mg, 100%). Pale yellow oil. [<math>a$] $_{2S99}^{2S} = -4$, [a] $_{435}^{2S} = -5$, [a] $_{435}^{2S} = -5$, [a] $_{435}^{2S} = -5$, [a] $_{435}^{2S} = -9$, [a] $_{435}^{2S} = -12 (c = 0.59, H_2O). UV (MeCN): 260 900), 206 (6600). IR (film): 3210, 1695, 1680, 1650, 1435, 1200, 1135. ¹H-NMR (400 MHz, MeOD): 7.48 - 7.36 (m, 5 arom. H); 4.07 (s, PhCH₂); 3.99 (dd, ³J(4,3) = 5.1, ³J(4,5) = 5.1, H-C(4)); 3.85 (dd, ³J(3,4) = 5.1, ³J(3,2)) = 5.2, H-C(3)); 3.71 (dd, ³J(1'',5)) = 4.0, ²J = 11.3, 1 H-C(1'')); 3.63 (dd, ³J(1'',5) = 4.7, ²J = 11.3, 1 H-C(1'')); 3.43 (m, H-C(2)); 3.35 (m, H-C(5))); 3.08 (dd, ³J(1',2) = 4.7, ²J = 11.3, 1 H-C(1'')); 3.43 (m, H-C(1')). ¹³C-NMR (101 MHz, MeOD): 137.2 (s, arom. C), 131.1 (d, ¹J(C,H) = 159, 2 arom. C), 130.8 (d, ¹J(C,H) = 161, 2 arom. C), 130.4 (d, ¹J(C,H) = 161, arom. C), 75.9 (d, ¹J(C,H) = 143, C(3)); 74.1 (d, ¹J(C,H) = 148, C(4)), 66.5 (d, ¹J(C,H) = 141, C(5)), 63.3 (t, ¹J(C,H) = 143, C(1'')); 62.3 (d, ¹J(C,H) = 142, C(2)), 54.2 (t, ¹J(C,H) = 140, PhCH₂), 51.2 (t, ¹J(C,H) = 141, C-(1')). CI-MS (NH₃): 253 (100, [<math>M + H$]⁺), 221 (6), 163 (3), 146 (10), 132 (58), 120 (71), 115 (67), 91 (56, PhCH₂[±]).

(2S,3S,4R,5R)-2-(Aminomethyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol ((-)-13). A soln. of (-)-11 (104 mg, 0.16 mmol) and 10% Pd(OH)₂/C (20 mg) in MeOH (3 ml) was stirred at r.t. for 12 h. The mixture was filtered through a pad of *Celite* and evaporated: pale oil (68 mg, 76%). This crude intermediate was stirred at r.t. for 30 min in a 4M aq. HCl soln. (2.5 ml). Evaporation and FC (silica gel, MeCN/NH₄OH soln. 4:1) afforded (-)-13 (20 mg, 100%). Pale yellow oil. $[a]_{359}^{25} = -4$, $[a]_{377}^{25} = -5$, $[a]_{346}^{25} = -7$, $[a]_{455}^{25} = -13$ (*c*=0.26, H₂O). UV(MeCN): 295 (1300), 260 (1280), 212 (3200). IR (film): 3500–3000, 1650, 1455, 1205, 800, 700. ¹H-NMR (400 MHz, D₂O): 4.33 (*dd*, ³*J*(3,4) = 5.0, ³*J*(3,2) = 7.6, H–C(3)); 4.29 (*dd*, ³*J*(4,5) = 3.7, ³*J*(4,3) = 5.0, H–C(4)); 3.97 (*dd*, ³*J*(1",5) = 3.4, ²*J* = 12.0, 1 H–C(1")); 3.92 – 3.83 (*m*, 1 H–C(1"), H–C(2), H–C(5)); 3.57 (*AB*, 2 H–C(1')). ¹³C-NMR (101 MHz, D₂O): 75.0 (*d*, ¹*J*(C,H) = 148, C(3)); 72.6 (*d*, ¹*J*(C,H) = 154, C(4)); 68.6 (*d*, ¹*J*(C,H) = 149, C(5)); 61.1 (*d*, ¹*J*(C,H) = 148, C(2)); 60.6 (*t*, ¹*J*(C,H) = 146, C(1")); 41.0 (*t*, ¹*J*(C,H) = 146, C(1')). CI-MS (NH₃): 163 (6, [*M*+H]⁺), 146 (8), 132 (100), 115 (11), 84 (9).

tert-*Butyl* (3aS,4S,6R,6aR)-4-[[[(tert-*Butyl*)dimethylsilyl]oxy]methyl]tetrahydro-6-(hydroxymethyl)-2,2dimethyl-5H-[1,3]dioxolo[4,5-c] pyrrole-5-carboxylate ((+)-14). To a soln. of (-)-10 (503 mg, 0.92 mmol) in CH₂Cl₂ (15 ml), cooled to 0°, were added 2,6-lutidine (267 μ l, 2.30 mmol, 2.5 equiv.) and 'BuMe₂SiOTf (296 μ l, 1.29 mmol, 1.4 equiv.). After stirring for 10 min at 0°, the mixture was diluted with CH₂Cl₂ (20 ml) and poured into sat. aq. NaHCO₃ soln. (20 ml). The aq. layer was extracted with CH₂Cl₂ (3 × 20 ml). The combined extract was washed with brine (10 ml), dried (MgSO₄), and evaporated. FC (silica gel, Et₂O/light petroleum ether 1:9) afforded intermediate fully protected pyrrolidine (354 mg, 58%) as a colorless oil.

Metallic Na (185 mg, 8.0 mmol, 15 equiv.) was added to liq. NH₃ (10 ml; condensed at -78°). A soln. of the fully protected pyrrolidine (354 mg, 0.54 mmol) in THF (5 ml) was added dropwise. After stirring at -78° for

20 min, solid NH₄Cl was added, and the mixture was allowed to warm up to r.t. The residue was diluted with MeOH, filtrated on a pad of *Celite*, and evaporated. Purification by FC (silica gel, AcOEt/light petroleum ether 1:4) afforded (+)-**14** (211 mg, 94%). Colorless oil. $[a]_{359}^{25} = +10$, $[a]_{377}^{25} = +11$, $[a]_{346}^{25} = +13$, $[a]_{455}^{25} = +22$, $[a]_{405}^{25} = +25$ (c = 0.75, CH₂Cl₂). UV (MeCN): 285 (20700). IR (film): 3445, 2935, 2885, 2860, 1695, 1675, 1470, 1395, 1335, 1255, 1215, 1175, 1110, 1065, 1005, 975, 940, 840, 780. ¹H-NMR (400 MHz, CDCl₃): 4.81–4.71 (m, H–C(3a)); 4.68–4.54 (m, H–C(6a)); 4.40–3.58 (m, H–C(4), H–C(6), 2 H–C(1'), 2 H–C(1'')); 1.51 (s, Me₂C); 1.48 (s, 'Bu); 1.36 (s, Me₂C); 0.93 (s, Me₃CSi); 0.12 (s, Me₂Si). ¹³C-NMR (101 MHz, CDCl₃): 154.1 (NCOO); 111.5 (Me₂CO); 82.1, 81.6, 81.5, 80.9 (C(3a), C(6a)); 80.7, 80.3 (Me₃CO); 66.7, 66.3, 65.8, 64.8, 63.9, 63.6, 63.1 (C(4), C(6), C(1''), C(1'')); 2.84 ('Bu); 2.76 (Me_2 C); 26.0 (Me_3 CSi); 25.5 (Me_2 C); 18.6 (Me_3 CSi); -5.5, -5.6 (Me_2 Si). CI-MS (NH₃): 418 (18, [M + H]⁺), 362 (15), 318 (56), 304 (45), 260 (29), 228 (11), 202 (55), 172 (100), 116 (7), 75 (28). Anal. calc. for C₂₀H₃₉NO₆Si (417.65): C 57.52, H 9.41, N 3.35; found C 57.56, H 9.54, N 3.44.

dro-2,2-diemethyl-5H-[1,3]dioxolo[4,5-c]pyrrole-5-carboxylate ((+)-15). As described for (-)-11, with oxalyl chloride (23 µl, 0.26 mmol, 1.15 equiv.), CH₂Cl₂ (1.5 ml), DMSO (39 µl, 0.55 mmol, 2.4 equiv.), (+)-**14** (94 mg, 0.23 mmol), CH₂Cl₂ (2.5 ml), and Et₂N (160 µl, 1.15 mmol, 5 equiv.). Workup with H₂O (10 ml), CH₂Cl₂ (3 × 10 ml), and brine (10 ml). Then with sodium triacetoxyborohydride (68 mg, 0.32 mmol, 1.4 equiv.), crude aldehyde (0.23 mmol), benzylamine (25 µl, 0.23 mmol), and 1,2-dichloroethane (3 ml) (12 h). Workup with sat. aq. NaHCO₃ soln. (5 ml) and CH₂Cl₂ (3 × 5 ml). FC (silica gel, AcOEt/light petroleum ether 1:4) afforded (+)-**15** (1:1 mixute of rotamers α and β ; 79 mg, 68% (2 steps)). Colorless oil. $[\alpha]_{359}^{25} = +22, [\alpha]_{577}^{25} = +22, [\alpha]_{546}^{25} = +22, [\alpha]_{5$ +25, $[a]_{\frac{245}{55}}^{25} = +33$, $[a]_{\frac{405}{55}}^{25} = +34$ (c = 0.49, CH₂Cl₂). UV (MeCN) 270 (4100), 208 (9030). IR (film): 3335, 2955, 2930, 2860, 1695, 1470, 1455, 1395, 1335, 1255, 1215, 1175, 1115, 1065, 975, 835, 780, 735, 700. ¹H-NMR (400 MHz, CDCl₃): 7.34-7.24 (m, 5 arom. H); 4.69 (m, H-C(3a)); 4.60 (m, H-C(6a)); 4.02-3.55 (m, H-C(4), H-C(6), PhCH₂, 2 H-C(1")); 2.87-2.60 (m, 2 H-C(1')); 1.47 (s, 'Bu); 1.40 (s, Me₂C); 1.34 (s, Me₂C); 0.89 (s, Me₃CSi); 0.04, 0.03 (2 s, Me). ¹³C-NMR (101 MHz, CDCl₃): 154.5 (s, NCOO); 140.4 (s, arom. C); 128.3 (d, ${}^{1}J(C,H) = 159, 2 \text{ arom. C}$; 128.0 (d, ${}^{1}J(C,H) = 160, 2 \text{ arom. C}$); 126.9 (d, ${}^{1}J(C,H) = 158, \text{ arom. C}$); 111.5 (s, Me_2CO ; 83.7 (d, ${}^{1}J(C,H) = 153$, $C(6a)_a$); 83.2 (d, ${}^{1}J(C,H) = 156$, $C(6a)_b$); 81.9 (d, ${}^{1}J(C,H) = 151$, $C(3a)_b$); 81.1 $(d, {}^{1}J(C,H) = 157, C(3a)_{a});$ 79.9 (s, Me₃CO); 66.0, 64.7 (2d, {}^{1}J(C,H) = 144, {}^{1}J(C,H) = 142, C(4), C(6)); 63.2 (t, t) = 142, C(4), C(6)); ${}^{1}J(C,H) = 142, C(1'')_{\beta}; 62.7 (t, {}^{1}J(C,H) = 144, C(1'')_{a}), 53.7 (t, {}^{1}J(C,H) = 132, PhCH_{2}); 51.2 (t, {}^{1}J(C,H) = 136, C(1'')_{\beta}; 51.2 (t, {}^{1}J(C,H) = 144, C(1'')_{a}), 53.7 (t, {}^{1}J(C,H) = 132, PhCH_{2}); 51.2 (t, {}^{1}J(C,H) = 136, C(1'')_{\beta}; 51.2 (t, {}^{1}J(C,H) = 136, C(1'')_{\beta}; 51.2 (t, {}^{1}J(C,H) = 144, C(1'')_{a}), 53.7 (t, {}^{1}J(C,H) = 132, PhCH_{2}); 51.2 (t, {}^{1}J(C,H) = 136, C(1'')_{\beta}; 51.$ C(1'), 28.4 (q, ${}^{1}J(C,H) = 126$, ${}^{1}Bu$); 27.4 (q, ${}^{1}J(C,H) = 127$, Me₂C); 26.0 (q, ${}^{1}J(C,H) = 125$, Me₃CSi); 25.5 (q, {}^{1}J(C,H) = 125, Me₃CSi); 25.5 (q, ${}^{1}J(C,H) = 126, Me_{2}C); 18.4 (s, Me_{3}CSi); -5.4 (q, {}^{1}J(C,H) = 120, Me_{2}Si). CI-MS: 507 (100, [M + H]^{+}), 449 (1), (M + H)^{-1}$ 228 (3), 154 (9), 120 (42), 91 (11).

tert-*Butyl* (3aS,4R,6R,6aR)-4-{[(tert-*Butyl*)dimethylsilyl]oxy]methyl]tetrahydro-2,2-dimethyl-6-[(tritylox-y)methyl]-5H-[1,3]dioxolo[4,5-c]pyrrole-5-carboxylate ((-)-**16**). As described for (+)-**14** with alcohol (-)-**9** (574 mg, 1.05 mmol), CH₂Cl₂ (17 ml), 2,6-lutidine (305 µl, 2.63 mmol, 2.5 equiv.), and 'BuMe₂Si (338 µl, 1.47 mmol, 1.4 equiv.) (omitting the Na/NH₃ treatment) (-)-**16** (631 mg, 91%). Colorless oil. [a] $_{359}^{25}$ = -60, [a] $_{377}^{25}$ = -63, [a] $_{446}^{25}$ = -68, [a] $_{4355}^{25}$ = -114, [a] $_{405}^{25}$ = -134 (c = 0.59, CH₂Cl₂). UV (MeCN) 262 (2200), 210 (28300). IR (film): 3435, 2955, 2855, 1695, 1450, 1370, 1255, 1215, 1165, 1085, 1000, 840, 755, 705. ¹H-NMR (400 MHz, CDCl₃): 7.42 - 7.24 (m, 15 arom. H); 4.87 - 4.48 (m, H - C(3a), H - C(6a), 1 H - C(1')); 4.15 - 4.05 (m, H - C(4), H - C(6)); 3.87 (m, 1 H - C(1')); 3.36 - 3.04 (m, 2 H - C(1'')); 1.53 (s, Me₂C); 1.49 (s, Me₂C); 1.34 (s, Bu); 0.94 (s, Me₃CSi); 0.11 (s, Me₂Si). ¹³C-NMR (101 MHz, CDCl₃): 154.3 (NCOO); 143.6 (arom. C); 128.6, 1279, 127.1 (arom C); 111.5 (Me₂CO); 86.5 (Me₃CC); 25.9 (Me₃CSi); 25.0 (Me₃CO); 65.0, 63.6 (C(4), C(6)); 63.5 (C(1'')); 60.5 (C(1'')); 28.4 (Bu); 26.5 (Me₂C); 25.9 (Me₃CSi); 25.0 (Me₂C); 18.5 (Me₃CSi); -5.5 (q, Me₂CSi). CI-MS (NH₃): 660 (7, [M + H]⁺), 286 (5), 243 (100), 165 (16), 105 (7). Anal. calc. for C₃₉H₅₃NO₆Si (659.98): C 70.98, H 8.09, N 2.12; found: C 70.91, H 8.03, N 2.09.

(3aR, 3bR, 8R, 8aS)-8-{{[[(tert-Butyl)dimethylsilyl]oxy]methyl]tetrahydro-4H, 6H-[1,3]dioxolo[3,4]pyrrolo[1,2-c]oxazol-6-one ((-)-17). As described for (+)-14 (omitting the tBuMe₂SiO Tf/2,6-lutidine treatment) with Na (42 mg, 1.84 mmol, 15 equiv.), NH₃ (5 ml), (-)-16 (81 mg, 0.12 mmol), and THF (2 ml) (NH₄Cl (0.5 g) for workup): (-)-17 (39 mg, 91%). [a] $\frac{5}{589} = -9$, [a] $\frac{5}{577} = -11$, [a] $\frac{5}{546} = -14$, [a] $\frac{2}{435} = -25$, [a] $\frac{4}{405} = -30$ (c = 0.37, CH₂Cl₂). UV (MeCN): 334 (470), 206 (3700). IR (film): 3500, 2930, 2855, 1765, 1705, 1470, 1395, 1255, 1215, 1080, 840, 775. ¹H-NMR (400 MHz, CDCl₃): 4.91 (dd, ³J(8a,3a) = 6.4, ³J(8a,8)) = 6.4, H-C(8a)); 4.56 (dd, ³J(4,3b) = 8.3, ²J = 9.4, H-C(4)); 4.47 (dd, ³J(3a,8a) = 6.4, ³J(3a,3b) = 6.3, H-C(3a)); 4.32 (dd, ³J(4,3b) = 3.4, ²J = 9.4, H-C(4)); 4.17 (m, H-C(8)); 3.93 (m, H-C(3b)); 3.89 (dd, ³J(1',8) = 6.6, ²J = 10.5, H-C(1')); 3.75 (dd, ³J(1',8) = 72, ²J = 10.5, H-C(1')); 1.53 (s, Me₂C); 1.33 (s, Me₂C); 0.91 (s, Me₃Ci); 0.09 (s, Me₂Si); ¹³C-NMR (101 MHz, CDCl₃): 160.3 (s, NCOO); 114.8 (s, Me₂CO); 84.5 (d, ¹J(C,H) = 154, C(3a)); 81.2 (d, ¹J(C,H) = 158, C(8a)); 66.8 (d, ¹J(C,H) = 153, C(4)); 62.9 (d, ¹J(C,H) = 152, C(3b)); 61.3 (d, ¹J(C,H) = 144, C(8)); 60.7 (t, C8)); 60.7 (t, 50.8 (d, ¹J(C,H) = 153, C(4)); 62.9 (d, ¹J(C,H) = 152, C(3b)); 61.3 (d, ¹J(C,H) = 144, C(8)); 60.7 (t, 50.8 (d, ¹J(C,H) = 154, C(3b)); 61.3 (d, ¹J(C,H) = 144, C(8)); 60.7 (t, 50.8 (d, ¹J(C,H) = 153, C(4)); 61.3 (d, ¹J(C,H) = 144, C(8)); 60.7 (t, 50.8 (d, ¹J(C,H) = 153, C(4)); 61.9 (d, ¹J(C,H) = 144, C(8)); 60.7 (t, 50.8 (d, ¹J(C,H) = 154, C(3a)); 61.3 (d, ¹J(C,H) = 144, C(8)); 60.7 (t, 50.8 (d, ¹J(C,H) = 154, C(3b)); 61.3 (d, ¹J(C,H) = 144, C(8)); 60.7 (t, 50.8 (d, ¹J(C,H) = 154, C(3b)); 61.3 (d, ¹J(C,H) = 144, C(8)); 60.7 (t, 50.8 (d, ¹J(C,H) = 153, C(4)); 61.9 (d, ¹J(C,H) = 144, C(8)); 60.7 (t, 50.8 (d, ¹J(C,H) = 153, C(4)); 61.9 (d, ¹J(C,H) = 144, C(8)); 60.7 (t, 50.8 (d, ¹

¹*J*(C,H) = 145, C(1')); 27.0 (*q*, ¹*J*(C,H) = 127, *Me*₂C); 25.8 (*q*, ¹*J*(C,H) = 125, Me₃CSi); 25.0 (*q*, ¹*J*(C,H) = 127, Me₂C); 18.3 (*s*, Me₃CSi); -5.5 (*q*, ¹*J*(C,H) = 119, Me₂Si). CI-MS (NH₃): 344 (28, $[M + H]^+$), 328 (7), 304 (1), 286 (37), 243 (18), 228 (22), 198 (25), 184 (44), 154 (79), 142 (100), 129 (61), 89 (6), 75 (28). Anal. calc. for C₁₆H₂₉NO₅Si (343.51): C 55.95, H 8.51 ; found: C 56.10, H 8.52.

tert-*Butyl* (3aS,4R,6R,6aR)-*Tetrahydro-4-[(methoxymethoxy)methyl]-2,2-dimethyl-6-[(trityloxy)methyl]*-5H-[1,3]dioxolo[4,5-c]pyrrole-5-carboxylate (-)-**18**. To a soln. of (-)-**9** (104 mg, 0.19 mmol) in CH₂Cl₂ (3 ml), cooled to 0°, were added *N*-ethyldiisopropylamine (196 µl, 1.14 mmol, 6 equiv.) and MeOCH₂Cl (58 µl, 0.76 mmol, 4 equiv.). The mixture was allowed to warm to r.t. for 12 h. The soln. was diluted with CH₂Cl₂ (5 ml) and washed with 1M HCl. The aq. layer was extracted with CH₂Cl₂ (3 × 5 ml) and the combined org. extract dried (MgSO₄) and evaporated. FC (silica gel (AcOEt/light petroleum ether 1:4)) afforded (-)-**18** (78 mg, 62%). Colorless oil. $[a]_{359}^{25} = -53$, $[a]_{377}^{25} = -55$, $[a]_{346}^{25} = -63$, $[a]_{455}^{25} = -106$, $[a]_{455}^{25} = -123$ (*c*=0.56, CH₂Cl₂). UV (MeCN): 260 (2020), 212 (25500). IR (film): 3060, 2980, 1700, 1600, 1490, 1450, 1370, 1250, 1210, 1155, 1045. ¹H-NMR (400 MHz, CDCl₃): 7.42–7.12 (*m*, 15 arom. H); 4.95 (*m*, H-C(6a)); 4.72 (*AB*, OCH₂O); 4.50 (*m*, H-C(1'')); 1.60 (*s*, Me₂C); 1.35 (*s*, ⁴Bu₂.) ¹³C-NMR (101 MHz, CDCl₃): 154.3 (NCOO); 14.5. (arom. C); 128.5, 128.0, 127.2 (arom. C); 111.2 (Me₂CO); 97.1 (OCH₂O); 81.4 (C(3a)); 80.3 (Me₃CO); 80.0 (C(6a)); 65.3 (C(4)); 63.7 (C(1')); 63.5 (C(1'')); 61.6 (C(6)); 55.2 (MeO); 28.4 (Bu₃); 26.0 (*Me*₂C), 24.8 (*Me*₂C). CI-MS (NH₃); 590 (2, [*M* + H]⁺), 527 (0.4), 348 (3), 292 (2), 243 (100), 216 (48), 165 (63). Anal. calc. for C₃₃H₄₃NO₇ (589.76): C 71.28, H 7.35; found: C 71.64, H 7.69.

tert-*Butyl* (3aR,4R,6R,6aS)-*Tetrahydro-4-(hydroxymethyl)-6-[(methoxymethoxy)methyl]-2,2-dimethyl-5H-[1,3]dioxolo[4,5-c]pyrrole-5-carboxylate* ((-)-**19**). As described for (-)-**17**, with Na (198 mg, 8.6 mmol, 30 equiv.), NH₃ (10 ml), (-)-**18** (169 mg, 0.29 mmol), and THF (4 ml) (NH₄Cl (0.8 g) for workup): (-)-**19** (76 mg, 76%). Colorless oil. [a] $\frac{25}{359}$ = -65, [a] $\frac{25}{377}$ = -70, [a] $\frac{25}{46}$ = -77, [a] $\frac{25}{45}$ = -130, [a] $\frac{25}{45}$ = -153 (*c*=0.46, CH₂Cl₂). UV (MeCN): 271 (780), 198 (6670). IR (film): 3460, 2980, 1695, 1660, 1455, 1370, 1250, 1210, 1040. ¹H-NMR (400 MHz, CDCl₃): 4.81 (*dd*, ³*J*(6a,3a) = 6.3, ³*J*(H-6a,6) = 6.2, H-C(6a)); 4.67 (*AB*, OCH₂O); 4.47 (br. s, H-C(3a)); 4.10 - 3.86 (*m*, H-C(4), H-C(6), H-C(1')); 3.81 (*t*, ³*J*(1'',6) = 9.3, H-C(1'')); 3.74 (*dd*, ³*J*(1',4) = 4.8, ²*J* = 11.4, H-C(1')); 3.40 (*s*, MeO); 1.55 (*s*, Me₂C); 1.49 (*s*, ^Bu); 1.38 (*s*, Me₂C). ¹³C-NMR (101 MHz, CDCl₃): 154.3 (*s*, NCOO); 111.5 (*s*, Me₂CO); 96.7 (*t*, ¹*J*(C,H) = 165, OCH₂O); 80.9 (*d*, ¹*J*(C,H) = 158, C(3a)); 80.2 (*s*, Me₃CO); 78.5 (*d*, ¹*J*(C,H) = 153, C(6a)); 65.4 (*d*, ¹*J*(C,H) = 142, MeO); 28.4 (*q*, ¹*J*(C,H) = 127, ^Bu); 26.0 (*q*, ¹*J*(C,H) = 127, ^{Me₂}C). CI-MS (NH₃): 349 (11), 348 (*b*, (*f*, *H*]+), 216 (10), 202 (2), 185 (13), 172 (100), 154 (7), 126 (5), 85 (2). Anal. calc. for C₁₆H₂₉NO₇ (347.43): C 55.32, H 8.41; found: C 55.30, H 8.32.

tert-Butyl (3aR,4R,6R,6aS)-4-[(Benzylamino)methyl]tetrahydro-6-[(methoxymethoxy)methyl]-2,2-dimethyl-5H-[1,3]dioxolo[4,5-c]pyrrole-5-carboxylate ((-)-20). As described for (-)-11, with oxalyl chloride (22 µl, 0.25 mmol, 1.15 equiv.), CH₂Cl₂ (1.5 ml), DMSO (37 µl, 0.52 mmol, 2.4 equiv.), (-)-19 (76 mg, 0.22 mmol, 1 equiv.), CH₂Cl₂ (2.5 ml), and Et₃N (152 µl, 1.09 mmol, 5 equiv.). Workup with H₂O (10 ml), CH_2Cl_2 (3 × 10 ml), and brine (10 ml). Then with sodium triacetoxyborohydride (65 mg, 0.31 mmol, 1.4 equiv.), crude aldehyde (0.22 mmol), benzylamine (24 µl, 0.23 mmol, 1 equiv.), and 1,2-dichloroethane (2 ml) (12 h). Workup with sat. aq. NaHCO₃ soln. (5 ml) and CH₂Cl₂ (3×5 ml): (-)-20 (55 mg, 57% (2 steps)). Pale yellow oil. $[a]_{359}^{25} = -65, [a]_{377}^{25} = -70, [a]_{346}^{25} = -79, [a]_{435}^{25} = -133, [a]_{405}^{25} = -160 (c = 0.62, CH_2Cl_2). UV (MeCN): 261 (c =$ (2530), 207 (17000). IR (film): 3340, 2980, 2935, 1700, 1495, 1455, 1370, 1280, 1245, 1165, 1115, 1050, 1000. ¹H-NMR (400 MHz, MeOD): 7.37 - 7.24 (*m*, 5 arom. H); 4.83 (*dd*, ${}^{3}J(6a, 3a) = 6.0$, ${}^{3}J(6a, 6) = 5.9$, H-C(6a)); 4.67(m, H-C(3a)); 4.63 (s, OCH₂O); 4.31-3.83 (m, 2 H-C(1")); 3.86 (m, H-C(6)); 3.80-3.74 (m, H-C(4), PhCH₂); 3.38 (*s*, MeO); 2.70 (*m*, 2 H–C(1')); 1.48 (*s*, Me₂C); 1.35 (*s*, 'Bu, Me₂C). ¹³C-NMR (101 MHz, MeOD): 157.1 (*s*, NCOO); 142.0 (*s*, arom. C); 130.3 (*d*, ${}^{1}J(C,H) = 160, 4 \text{ arom. C}$); 129.0 (*d*, ${}^{1}J(C,H) = 161, \text{ arom. C}$); 113.3 (s, Me₂CO); 98.7 (t, ${}^{1}J(C,H) = 161$, OCH₂O); 83.7 (d, ${}^{1}J(C,H) = 159$, C(3a)); 82.4 (s, Me₃CO); 81.7 (d, ${}^{1}J(C,H) = 160, C(6a)); 66.7 (d, {}^{1}J(C,H) = 152, C(4)); 66.3 (d, {}^{1}J(C,H) = 147, C(1'')); 62.7 (d, {}^{1}J(C,H) = 140, C(1'')); 62.7$ C(6)); 56.4 (q, ${}^{1}J(C,H) = 135$, MeO); 55.4 (t, ${}^{1}J(C,H) = 134$, PhCH₂); 50.4 (t, C(1')); 29.5 (q, ${}^{1}J(C,H) = 127$, $Me_{3}C$; 27.3, 25.9 (2q, ${}^{1}J(C,H) = 127, Me_{2}C$). CI-MS (NH₃): 437 (2, $[M + H]^{+}$), 375 (1), 216 (2), 184 (7), 143 (2), 120 (33), 91 (100, PhCH⁺₂). Anal. calc. for C₂₃H₃₆N₂O₆ (436.57): C 63.28, H 8.31; found: C 63.38, H 8.36.

 $(2R,3R,4S,5R)-2-[(Benzylamino)methyl]-5-(hydroxymethyl)pyrrolidine-3,4-diol ((+)-21). As described for (-)-12, with (-)-20 (24 mg, 5.497 \cdot 10^{-5} mol), CF₃COOH (2 ml), and H₂O (0.25 ml) (30 min): (+)-21 (14 mg, 100%). Colorless oil. [<math>a$] $_{259}^{25}$ = +6, [a] $_{2577}^{25}$ =+7, [a] $_{2546}^{25}$ =+8, [a] $_{455}^{25}$ =+14 (c =0.64, MeOH). UV (MeCN): 266 (640), 198 (2400). IR (film): 3280, 2920, 1655, 1580, 1460, 795. ¹H-NMR (400 MHz, D₂O): 7.53 - 7.47 (m, 5 arom. H); 4.21 (dd, ${}^{3}J(4,3)$ = 4.0, ${}^{3}J(4,5)$ = 3.7, H-C(4)); 4.05 (s, PhCH₂); 3.99 (dd, ${}^{3}J(3,4)$) = 4.0, ${}^{3}J(4,5)$ = 3.7, H-C(4)); 4.05 (s, PhCH₂); 3.99 (dd, ${}^{3}J(3,4)$) = 4.0, ${}^{3}J(4,5)$ = 3.7, H-C(4)); 4.05 (s, PhCH₂); 3.99 (dd, ${}^{3}J(3,4)$) = 4.0, ${}^{3}J(4,5)$ = 3.7, H-C(4)); 4.05 (s, PhCH₂); 3.99 (dd, ${}^{3}J(3,4)$) = 4.0, ${}^{3}J(4,5)$ = 3.7, H-C(4)); 4.05 (s, PhCH₂); 3.99 (dd, ${}^{3}J(3,4)$) = 4.0, ${}^{3}J(3,4)$ = 4.0, ${}^{3}J(4,5)$ = 3.7, H-C(4)); 4.05 (s, PhCH₂); 3.99 (dd, ${}^{3}J(3,4)$) = 4.0, ${}^{3}J(3,4)$ = 4.0, ${}^{3}J(4,5)$ = 3.7, H-C(4)); 4.05 (s, PhCH₂); 3.99 (dd, ${}^{3}J(3,4)$) = 4.0, ${}^{3}J(3,4)$ = 4.0, ${}^{3}J(4,5)$ = 3.7, H-C(4)); 4.05 (s, PhCH₂); 3.99 (dd, ${}^{3}J(3,4)$) = 4.0, ${}^{3}J(3,4)$ = 4.0, 3

 ${}^{3}J(3,2) = 8.2, H-C(3); 3.85 (dd, {}^{3}J(1'',5) = 6.6, {}^{2}J = 11.5, 1 H-C(1''); 3.71 (dd, {}^{3}J(1'',5)) = 6.6, {}^{2}J = 11.5, 1 H-C(1''); 3.36 (m, H-C(2), H-C(5)); 3.08 (dd, {}^{3}J(1',2) = 4.4, {}^{2}J = 12.5, 1 H-C(1'); 2.93 (dd, {}^{3}J(1',2) = 9.0, {}^{2}J = 12.5, 1 H-C(1'); 13.6 (2 arom. C); 131.4 (2 arom. C); 130.9 (arom. C); 78.3 (C(3)); 74.3 (C(4)); 62.5, 60.8 (C(2), C(5), C(1'')); 54.6 (PhCH_2); 53.1 (C(1')). ESI-MS: 253.34. (C(2), C(3)); 74.3 (C(4)); 62.5, 60.8 (C(2), C(5), C(1'')); 54.6 (PhCH_2); 53.1 (C(1')). ESI-MS: 253.34. (C(2), C(3)); 74.3 (C(4)); 62.5, 60.8 (C(3)); 74.3 (C(4)); 74.3 (C(4$

(2R,3R,4S,5R)-2-(Aminomethyl)-5-(hydroxymethyl)pyrrolidine-3,4-diol ((+)-22). As described for (-)-13, with (-)-20 (110 mg, 0.250 mmol), 10% Pd(OH)₂/C (20 mg), and MeOH (5 ml). Then with the pale yellow oily intermediate (86 mg, 100%) and 4 μ HCl (5 ml) (1 h). (+)-22 (40 mg, 100%). Colorless oil.

Data of Intermediate tert-Butyl (3aR,4R,6R,6aS)-4-(Aminomethyl)tetrahydro-6-[(methoxymethoxy)methyl]-2,2-dimethyl-5H-[1,3]dioxolo[4,5-c]pyrrole-5-carboxylate: $[a]_{356}^{25} = -80, [a]_{357}^{25} = -80, [a]_{356}^{25} = -92, [a]_{355}^{25} = -154, [a]_{455}^{25} = -182 (c = 0.46, CH_2Cl_2). UV (MeCN): 263 (640), 198 (9050). IR (film): 3380, 2980, 2935, 1695, 1455, 1370, 1280, 1245, 1210, 1165, 1115, 1050, 1000. ¹H-NMR (400 MHz, MeOD): 4.82 (m, H-C(6a)); 4.67 (m, H-C(3a)); 4.64 (s, OCH₂O); 4.36 - 4.11 (m, 2 H - C(1'')); 3.90 (m, H - C(6)); 3.79 (dd, ³J(4,3) = 9.1, ³J(4,1') = 9.2, H - C(4)); 3.39 (s, MeO); 2.84 (m, 2 H - C(1')); 1.50 (s, Me_2C, 'Bu); 1.37 (s, Me_2C). ¹³C-NMR (101 MHz, MeOD): 156.9 (s, NCOO); 113.5 (s, Me_2CO); 98.6 (t, ¹J(C,H) = 161, OCH₂O); 83.0 (d, ¹J(C,H) = 146, C(3a)); 81.6 (s, Me_3CO); 81.5 (d, ¹J(C,H) = 158, C(6a)); 66.8 (t, ¹J(C,H) = 141, C(1'')); 66.7 (d, ¹J(C,H) = 156, C(4)); 62.4 (d, ¹J(C,H) = 142, C(6)); 56.4 (q, ¹J(C,H) = 136, MeO); 43.4 (t, ¹J(C,H) = 148, C(1')); 29.7 (q, ¹J(C,H) = 127, Me_3C); 27.3, 25.9 (2q, ¹J(C,H) = 127, Me_2C). CI-MS (NH₃): 347 (1, [M + H]⁺), 291 (2), 241 (6), 216 (22), 184 (100), 154 (24), 126 (17), 98 (42), 84 (24). Anal. calc. for C₁₆H₃₀N₂O₆ (346.44): C 55.47, H 8.73; found: C 55.71, H 8.69.$

 $\begin{array}{l} Data \ for \ (+)-\textbf{22}: \ [a]_{359}^{25} = +17, \ [a]_{577}^{25} = +28, \ [a]_{346}^{25} = +34, \ [a]_{435}^{25} = +59, \ [a]_{455}^{25} = +71 \ (c=0.13, \ H_2O). \ UV \ (MeCN): 269 \ (605), 260 \ (605), 202 \ (270). \ IR \ (film): 3600-2980, 1680, 1630, 1455, 1435, 1200, 800, 700. \ ^{1}H-NMR \ (400 \ MHz, D_2O): 4.42 \ (m, H-C(4)); 4.37 \ (dd, ^{3}J(3,4)) = 3.7, \ ^{3}J(3,2)) = 9.5, \ H-C(3)); 4.11 - 4.00 \ (m, H-C(5), 2H-C(1'')); 3.90 \ (m, H-C(2)); 3.61 \ (m, 2H-C(1')). \ ^{13}C-NMR \ (101 \ MHz, D_2O): 76.6 \ (d, \ ^{1}J(C,H) = 142, \ C(3)); \\ 71.9 \ (d, \ ^{1}J(C,H) = 157, \ C(4)); 65.4 \ (d, \ ^{1}J(C,H) = 151, \ C(5)); 59.9 \ (t, \ ^{1}J(C,H) = 141, \ C(1'')); 59.4 \ (d, \ ^{1}J(C,H) = 144, \ C(2)); 41.5 \ (t, \ ^{1}J(C,H) = 142, \ C(1')). \ EI-MS: 163.38. \end{array}$

REFERENCES

- R. Kornfeld, S. Kornfeld, Ann. Rev. Biochem. 1985, 54, 631; K. W. Morenem, R. B. Trimble, A. Herscovics, Glycobiology 1994, 4, 113; A. Varki, Glycobiology 1993, 3, 97; P. R. Crocker, T. Feizi, Curr. Opin. Struct. Biol. 1996, 6, 679; R. A. Dwek, Chem. Rev. 1996, 96, 683; I. Brockhausen, Biochim. Biophys. Acta 1999, 1473, 67.
- [2] T. D. Butters, R. A. Dwek, F. M. Platt, Chem. Rev. 2000, 100, 4683.
- [3] A. J., Kirby, Acc. Chem. Res. 1984, 17, 305; D. G. Gorenstein, Chem. Rev. 1987, 87, 1047; M. L. Sinnott, Chem. Rev. 1990, 90, 1171; J. H. Jeong, B. W. Murray, S. Takayama, C. H. Wong, J. Am. Chem. Soc. 1996, 118, 4227; B. Ganem, Acc. Chem. Res. 1996, 29, 340; M. Bols, Acc. Chem. Res. 1998, 31, 1; T. D. Heightman, A. T. Vasella, Angew. Chem., Int. Ed. 1999, 38, 750; Y. Ichikawa, Y. C. Lin, D. P. Dumas, G. J. Shen, E. Garcia-Jonceda, M. A. Williams, R. Bayer, C. Ketcham, L. E. Walker, J. C. Paulson, C. H. Wong, J. Am. Chem. Soc. 1992, 114, 9283; L. Qiao, B. W. Murray, M. Shimazakin, J. Schultz, C. H. Wong, J. Am. Chem. Soc. 1996, 118, 7653; I. Jefferies, B. R. Bowen, Bioorg. Med. Chem. Lett. 1997, 7, 1171; M. M. Palcic, L. D. Heerze, O. P. Srivastava, O. J. Hindsgaul, Biol. Chem. 1989, 264, 17174.
- [4] B. Fernandes, U. Sagman, M. Auger, M. Demetrio, J. W. Dennis, *Cancer Res.* 1991, *51*, 718; K. M. Robinson, M. E. Begovic, M. E. Rhinerhardt, E. W. Heineke, J. B. Ducep, P. R. Kastner, F. N. Marshall, C. Danzin, *Diabetes* 1991, *40*, 825; F. M. Platt, G. Reinkensmeier, R. A. Dwek, T. D. Butters, *J. Biol. Chem.* 1997, *272*, 19365; F. Lapierre, K. Holme, L. Lam, R. J. Tressler, N. Storm, J. Wee, R. J. Stack, J. Castellot, D. J. Tyrrell, *Glycobiology* 1996, *6*, 355; A. Mehta, N. Zizmann, P. M. Rudd, T. M. Block, R. A. Dwek, *FEBS Lett.* 1998, *430*, 17; T. Kolter, *Angew. Chem., Int. Ed.* 1997, *36*, 1955; Q. J. Fan, S. Ishii, N. Asano, Y. Suzuki, *Nat. Med.* 1999, *5*, 112; T. Cox, R. Lachman, C. Hollack, J. Aerts, S. van Weely, M. Hrebicek, F. Platt, T. Butters, R. Dwek, C. Moyses, I. Gow, D. Elstein, A. Zimran, *Lancet* 2000, *355*, 1481.
- [5] S. M. Colegate, P. R. Dorling, C. R. Huxtable, Austr. J. Chem. 1979, 32, 2257; S. L. White, T. Nagai, S. K. Akiyama, E. J. Reeves, K. Grzegorzewski, K. Olden, Cancer Commun., 1991, 3, 83; K. Olden, P. Breton, K. Grzegorzewski, Y. Yasuda, B. L. Gause, O. A. Oredipe, S. A. Newton, S. L. White, Pharmacol. Ther. 1991, 50, 285; N. Asano, J. Enzyme Inhibition 2000 15, 215; J. Carver, J. W. Dennis, P. Shah, US Patent 5773239A, 30 June, 1998 (Chem. Abstr. 1998, 129, 95683).

- [6] A. D. Elbein, R. D. Molyneux, 'Iminosugars as Glycosidase Inhibitors; Nojirimycin and Beyond', Ed. A. E. Stütz, Wiley-VCH, Weinheim, 1999, Chapt.11, p. 216.
- [7] P. E. Goss, J. Baptiste, B. Fernades, M. Baker, J. W. Dennis, *Cancer Res.* 1994, 54, 1450; P. E. Goss, C. L. Reid, D. Bailey, J. W. Dennis, *Clin. Cancer Res.* 1997, 3, 1077; P. D. Rye, N. V. Bovin, E. V. Vlasova, R. A. Walker, *Glycobiology* 1995, 5, 385.
- [8] F. Popowycz, S. Gerber-Lemaire, E. Rodriguez-García, C. Schütz, P. Vogel, Helv. Chim. Acta 2003, 86, 1914.
- [9] C. Saotome, C. H. Wong, O. Kanie, Chem. Biol. 2001, 8, 1061.
- [10] N. Ikota, H. Nakagawa, S. Ohno, K. Noguchi, K. Okuyama, Tetrahedron 1998, 54, 8985.
- [11] A. J. Mancuso, S. L. Huang, D. Swern, J. Org. Chem. 1978, 43, 2480; T. Tidwell, Org. React. 1990, 39, 287.
 [12] A. K. Forrest, R. R. Schmidt, G. Hunter, I. Jibril, J. Chem. Soc. Perkin Trans. 1 1984, 1981; A. Defoin, T. Sifferlen, J. Streith, Synlett 1997, 1294.
- [13] A. Brandi, S. Cicchi, F. M. Cordero, B. Frignoli, A. Goti, S. Picasso, P. Vogel, J. Org. Chem. 1995, 60, 6806.

Received October 16, 2003